tsTransform.cpp
Engine/source/ts/tsTransform.cpp
Detailed Description
1 2//----------------------------------------------------------------------------- 3// Copyright (c) 2012 GarageGames, LLC 4// 5// Permission is hereby granted, free of charge, to any person obtaining a copy 6// of this software and associated documentation files (the "Software"), to 7// deal in the Software without restriction, including without limitation the 8// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 9// sell copies of the Software, and to permit persons to whom the Software is 10// furnished to do so, subject to the following conditions: 11// 12// The above copyright notice and this permission notice shall be included in 13// all copies or substantial portions of the Software. 14// 15// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21// IN THE SOFTWARE. 22//----------------------------------------------------------------------------- 23 24#include "ts/tsTransform.h" 25#include "core/stream/stream.h" 26 27void Quat16::identity() 28{ 29 x = y = z = 0; 30 w = MAX_VAL; 31} 32 33QuatF Quat16::getQuatF() const 34{ 35 return QuatF ( F32(x) / F32(MAX_VAL), 36 F32(y) / F32(MAX_VAL), 37 F32(z) / F32(MAX_VAL), 38 F32(w) / F32(MAX_VAL) ); 39} 40 41QuatF & Quat16::getQuatF( QuatF * q ) const 42{ 43 q->x = F32( x ) / F32(MAX_VAL); 44 q->y = F32( y ) / F32(MAX_VAL); 45 q->z = F32( z ) / F32(MAX_VAL); 46 q->w = F32( w ) / F32(MAX_VAL); 47 return *q; 48} 49 50void Quat16::set( const QuatF & q ) 51{ 52 x = (S16)(q.x * F32(MAX_VAL)); 53 y = (S16)(q.y * F32(MAX_VAL)); 54 z = (S16)(q.z * F32(MAX_VAL)); 55 w = (S16)(q.w * F32(MAX_VAL)); 56} 57 58S32 Quat16::operator==( const Quat16 & q ) const 59{ 60 return( x == q.x && y == q.y && z == q.z && w == q.w ); 61} 62 63void Quat16::read(Stream * s) 64{ 65 s->read(&x); 66 s->read(&y); 67 s->read(&z); 68 s->read(&w); 69} 70 71void Quat16::write(Stream * s) 72{ 73 s->write(x); 74 s->write(y); 75 s->write(z); 76 s->write(w); 77} 78 79QuatF & TSTransform::interpolate( const QuatF & q1, const QuatF & q2, F32 interp, QuatF * q ) 80{ 81 F32 Dot; 82 F32 Dist2; 83 F32 OneOverL; 84 F32 x1,y1,z1,w1; 85 F32 x2,y2,z2,w2; 86 87 // 88 // This is a linear interpolation with a fast renormalization. 89 // 90 x1 = q1.x; 91 y1 = q1.y; 92 z1 = q1.z; 93 w1 = q1.w; 94 x2 = q2.x; 95 y2 = q2.y; 96 z2 = q2.z; 97 w2 = q2.w; 98 99 // Determine if quats are further than 90 degrees 100 Dot = x1*x2 + y1*y2 + z1*z2 + w1*w2; 101 102 // If dot is negative flip one of the quaterions 103 if( Dot < 0.0f ) 104 { 105 x1 = -x1; 106 y1 = -y1; 107 z1 = -z1; 108 w1 = -w1; 109 } 110 111 // Compute interpolated values 112 x1 = x1 + interp*(x2 - x1); 113 y1 = y1 + interp*(y2 - y1); 114 z1 = z1 + interp*(z2 - z1); 115 w1 = w1 + interp*(w2 - w1); 116 117 // Get squared distance of new quaternion 118 Dist2 = x1*x1 + y1*y1 + z1*z1 + w1*w1; 119 120 // Use home-baked polynomial to compute 1/sqrt(Dist2) 121 // since we know the range is 0.707 >= Dist2 <= 1.0 122 // we'll split in half. 123 124 if( Dist2<0.857f ) 125 OneOverL = (((0.699368f)*Dist2) + -1.819985f)*Dist2 + 2.126369f; //0.0000792 126 else 127 OneOverL = (((0.454012f)*Dist2) + -1.403517f)*Dist2 + 1.949542f; //0.0000373 128 129 // Renormalize 130 q->x = x1*OneOverL; 131 q->y = y1*OneOverL; 132 q->z = z1*OneOverL; 133 q->w = w1*OneOverL; 134 135 return *q; 136} 137 138void TSTransform::applyScale(F32 scale, MatrixF * mat) 139{ 140 mat->scale(Point3F(scale,scale,scale)); 141} 142 143void TSTransform::applyScale(const Point3F & scale, MatrixF * mat) 144{ 145 mat->scale(scale); 146} 147 148void TSTransform::applyScale(const TSScale & scale, MatrixF * mat) 149{ 150 MatrixF mat2; 151 TSTransform::setMatrix(scale.mRotate,&mat2); 152 MatrixF mat3(mat2); 153 mat3.inverse(); 154 mat2.scale(scale.mScale); 155 mat2.mul(mat3); 156 mat->mul(mat2); 157} 158