strtod.h

Engine/source/persistence/rapidjson/internal/strtod.h

More...

Namespaces:

namespace

Detailed Description

  1
  2// Tencent is pleased to support the open source community by making RapidJSON available.
  3// 
  4// Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.
  5//
  6// Licensed under the MIT License (the "License"); you may not use this file except
  7// in compliance with the License. You may obtain a copy of the License at
  8//
  9// http://opensource.org/licenses/MIT
 10//
 11// Unless required by applicable law or agreed to in writing, software distributed 
 12// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 
 13// CONDITIONS OF ANY KIND, either express or implied. See the License for the 
 14// specific language governing permissions and limitations under the License.
 15
 16#ifndef RAPIDJSON_STRTOD_
 17#define RAPIDJSON_STRTOD_
 18
 19#include "ieee754.h"
 20#include "biginteger.h"
 21#include "diyfp.h"
 22#include "pow10.h"
 23#include <climits>
 24#include <limits>
 25
 26RAPIDJSON_NAMESPACE_BEGIN
 27namespace internal {
 28
 29inline double FastPath(double significand, int exp) {
 30    if (exp < -308)
 31        return 0.0;
 32    else if (exp >= 0)
 33        return significand * internal::Pow10(exp);
 34    else
 35        return significand / internal::Pow10(-exp);
 36}
 37
 38inline double StrtodNormalPrecision(double d, int p) {
 39    if (p < -308) {
 40        // Prevent expSum < -308, making Pow10(p) = 0
 41        d = FastPath(d, -308);
 42        d = FastPath(d, p + 308);
 43    }
 44    else
 45        d = FastPath(d, p);
 46    return d;
 47}
 48
 49template <typename T>
 50inline T Min3(T a, T b, T c) {
 51    T m = a;
 52    if (m > b) m = b;
 53    if (m > c) m = c;
 54    return m;
 55}
 56
 57inline int CheckWithinHalfULP(double b, const BigInteger& d, int dExp) {
 58    const Double db(b);
 59    const uint64_t bInt = db.IntegerSignificand();
 60    const int bExp = db.IntegerExponent();
 61    const int hExp = bExp - 1;
 62
 63    int dS_Exp2 = 0, dS_Exp5 = 0, bS_Exp2 = 0, bS_Exp5 = 0, hS_Exp2 = 0, hS_Exp5 = 0;
 64
 65    // Adjust for decimal exponent
 66    if (dExp >= 0) {
 67        dS_Exp2 += dExp;
 68        dS_Exp5 += dExp;
 69    }
 70    else {
 71        bS_Exp2 -= dExp;
 72        bS_Exp5 -= dExp;
 73        hS_Exp2 -= dExp;
 74        hS_Exp5 -= dExp;
 75    }
 76
 77    // Adjust for binary exponent
 78    if (bExp >= 0)
 79        bS_Exp2 += bExp;
 80    else {
 81        dS_Exp2 -= bExp;
 82        hS_Exp2 -= bExp;
 83    }
 84
 85    // Adjust for half ulp exponent
 86    if (hExp >= 0)
 87        hS_Exp2 += hExp;
 88    else {
 89        dS_Exp2 -= hExp;
 90        bS_Exp2 -= hExp;
 91    }
 92
 93    // Remove common power of two factor from all three scaled values
 94    int common_Exp2 = Min3(dS_Exp2, bS_Exp2, hS_Exp2);
 95    dS_Exp2 -= common_Exp2;
 96    bS_Exp2 -= common_Exp2;
 97    hS_Exp2 -= common_Exp2;
 98
 99    BigInteger dS = d;
100    dS.MultiplyPow5(static_cast<unsigned>(dS_Exp5)) <<= static_cast<unsigned>(dS_Exp2);
101
102    BigInteger bS(bInt);
103    bS.MultiplyPow5(static_cast<unsigned>(bS_Exp5)) <<= static_cast<unsigned>(bS_Exp2);
104
105    BigInteger hS(1);
106    hS.MultiplyPow5(static_cast<unsigned>(hS_Exp5)) <<= static_cast<unsigned>(hS_Exp2);
107
108    BigInteger delta(0);
109    dS.Difference(bS, &delta);
110
111    return delta.Compare(hS);
112}
113
114inline bool StrtodFast(double d, int p, double* result) {
115    // Use fast path for string-to-double conversion if possible
116    // see http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
117    if (p > 22  && p < 22 + 16) {
118        // Fast Path Cases In Disguise
119        d *= internal::Pow10(p - 22);
120        p = 22;
121    }
122
123    if (p >= -22 && p <= 22 && d <= 9007199254740991.0) { // 2^53 - 1
124        *result = FastPath(d, p);
125        return true;
126    }
127    else
128        return false;
129}
130
131// Compute an approximation and see if it is within 1/2 ULP
132inline bool StrtodDiyFp(const char* decimals, int dLen, int dExp, double* result) {
133    uint64_t significand = 0;
134    int i = 0;   // 2^64 - 1 = 18446744073709551615, 1844674407370955161 = 0x1999999999999999    
135    for (; i < dLen; i++) {
136        if (significand  >  RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) ||
137            (significand == RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) && decimals[i] > '5'))
138            break;
139        significand = significand * 10u + static_cast<unsigned>(decimals[i] - '0');
140    }
141    
142    if (i < dLen && decimals[i] >= '5') // Rounding
143        significand++;
144
145    int remaining = dLen - i;
146    const int kUlpShift = 3;
147    const int kUlp = 1 << kUlpShift;
148    int64_t error = (remaining == 0) ? 0 : kUlp / 2;
149
150    DiyFp v(significand, 0);
151    v = v.Normalize();
152    error <<= -v.e;
153
154    dExp += remaining;
155
156    int actualExp;
157    DiyFp cachedPower = GetCachedPower10(dExp, &actualExp);
158    if (actualExp != dExp) {
159        static const DiyFp kPow10[] = {
160            DiyFp(RAPIDJSON_UINT64_C2(0xa0000000, 0x00000000), -60),  // 10^1
161            DiyFp(RAPIDJSON_UINT64_C2(0xc8000000, 0x00000000), -57),  // 10^2
162            DiyFp(RAPIDJSON_UINT64_C2(0xfa000000, 0x00000000), -54),  // 10^3
163            DiyFp(RAPIDJSON_UINT64_C2(0x9c400000, 0x00000000), -50),  // 10^4
164            DiyFp(RAPIDJSON_UINT64_C2(0xc3500000, 0x00000000), -47),  // 10^5
165            DiyFp(RAPIDJSON_UINT64_C2(0xf4240000, 0x00000000), -44),  // 10^6
166            DiyFp(RAPIDJSON_UINT64_C2(0x98968000, 0x00000000), -40)   // 10^7
167        };
168        int adjustment = dExp - actualExp;
169        RAPIDJSON_ASSERT(adjustment >= 1 && adjustment < 8);
170        v = v * kPow10[adjustment - 1];
171        if (dLen + adjustment > 19) // has more digits than decimal digits in 64-bit
172            error += kUlp / 2;
173    }
174
175    v = v * cachedPower;
176
177    error += kUlp + (error == 0 ? 0 : 1);
178
179    const int oldExp = v.e;
180    v = v.Normalize();
181    error <<= oldExp - v.e;
182
183    const int effectiveSignificandSize = Double::EffectiveSignificandSize(64 + v.e);
184    int precisionSize = 64 - effectiveSignificandSize;
185    if (precisionSize + kUlpShift >= 64) {
186        int scaleExp = (precisionSize + kUlpShift) - 63;
187        v.f >>= scaleExp;
188        v.e += scaleExp; 
189        error = (error >> scaleExp) + 1 + kUlp;
190        precisionSize -= scaleExp;
191    }
192
193    DiyFp rounded(v.f >> precisionSize, v.e + precisionSize);
194    const uint64_t precisionBits = (v.f & ((uint64_t(1) << precisionSize) - 1)) * kUlp;
195    const uint64_t halfWay = (uint64_t(1) << (precisionSize - 1)) * kUlp;
196    if (precisionBits >= halfWay + static_cast<unsigned>(error)) {
197        rounded.f++;
198        if (rounded.f & (DiyFp::kDpHiddenBit << 1)) { // rounding overflows mantissa (issue #340)
199            rounded.f >>= 1;
200            rounded.e++;
201        }
202    }
203
204    *result = rounded.ToDouble();
205
206    return halfWay - static_cast<unsigned>(error) >= precisionBits || precisionBits >= halfWay + static_cast<unsigned>(error);
207}
208
209inline double StrtodBigInteger(double approx, const char* decimals, int dLen, int dExp) {
210    RAPIDJSON_ASSERT(dLen >= 0);
211    const BigInteger dInt(decimals, static_cast<unsigned>(dLen));
212    Double a(approx);
213    int cmp = CheckWithinHalfULP(a.Value(), dInt, dExp);
214    if (cmp < 0)
215        return a.Value();  // within half ULP
216    else if (cmp == 0) {
217        // Round towards even
218        if (a.Significand() & 1)
219            return a.NextPositiveDouble();
220        else
221            return a.Value();
222    }
223    else // adjustment
224        return a.NextPositiveDouble();
225}
226
227inline double StrtodFullPrecision(double d, int p, const char* decimals, size_t length, size_t decimalPosition, int exp) {
228    RAPIDJSON_ASSERT(d >= 0.0);
229    RAPIDJSON_ASSERT(length >= 1);
230
231    double result = 0.0;
232    if (StrtodFast(d, p, &result))
233        return result;
234
235    RAPIDJSON_ASSERT(length <= INT_MAX);
236    int dLen = static_cast<int>(length);
237
238    RAPIDJSON_ASSERT(length >= decimalPosition);
239    RAPIDJSON_ASSERT(length - decimalPosition <= INT_MAX);
240    int dExpAdjust = static_cast<int>(length - decimalPosition);
241
242    RAPIDJSON_ASSERT(exp >= INT_MIN + dExpAdjust);
243    int dExp = exp - dExpAdjust;
244
245    // Make sure length+dExp does not overflow
246    RAPIDJSON_ASSERT(dExp <= INT_MAX - dLen);
247
248    // Trim leading zeros
249    while (dLen > 0 && *decimals == '0') {
250        dLen--;
251        decimals++;
252    }
253
254    // Trim trailing zeros
255    while (dLen > 0 && decimals[dLen - 1] == '0') {
256        dLen--;
257        dExp++;
258    }
259
260    if (dLen == 0) { // Buffer only contains zeros.
261        return 0.0;
262    }
263
264    // Trim right-most digits
265    const int kMaxDecimalDigit = 767 + 1;
266    if (dLen > kMaxDecimalDigit) {
267        dExp += dLen - kMaxDecimalDigit;
268        dLen = kMaxDecimalDigit;
269    }
270
271    // If too small, underflow to zero.
272    // Any x <= 10^-324 is interpreted as zero.
273    if (dLen + dExp <= -324)
274        return 0.0;
275
276    // If too large, overflow to infinity.
277    // Any x >= 10^309 is interpreted as +infinity.
278    if (dLen + dExp > 309)
279        return std::numeric_limits<double>::infinity();
280
281    if (StrtodDiyFp(decimals, dLen, dExp, &result))
282        return result;
283
284    // Use approximation from StrtodDiyFp and make adjustment with BigInteger comparison
285    return StrtodBigInteger(result, decimals, dLen, dExp);
286}
287
288} // namespace internal
289RAPIDJSON_NAMESPACE_END
290
291#endif // RAPIDJSON_STRTOD_
292