mSolver.cpp
Engine/source/math/mSolver.cpp
Public Defines
define
EQN_EPSILON() (1e-8)
Public Variables
U32(*
mSolveCubic )(F32 a, F32 b, F32 c, F32 d, F32 *x)
U32(*
mSolveQuadratic )(F32 a, F32 b, F32 c, F32 *x)
U32(*
mSolveQuartic )(F32 a, F32 b, F32 c, F32 d, F32 e, F32 *x)
Public Functions
Detailed Description
Public Defines
EQN_EPSILON() (1e-8)
Public Variables
U32(* mSolveCubic )(F32 a, F32 b, F32 c, F32 d, F32 *x)
U32(* mSolveQuadratic )(F32 a, F32 b, F32 c, F32 *x)
U32(* mSolveQuartic )(F32 a, F32 b, F32 c, F32 d, F32 e, F32 *x)
Public Functions
mCbrt(F32 val)
mSolveCubic_c(F32 a, F32 b, F32 c, F32 d, F32 * x)
mSolveLinear(F32 a, F32 b, F32 * x)
mSolveQuadratic_c(F32 a, F32 b, F32 c, F32 * x)
mSolveQuartic_c(F32 a, F32 b, F32 c, F32 d, F32 e, F32 * x)
swap(F32 & a, F32 & b)
1 2//----------------------------------------------------------------------------- 3// Copyright (c) 2012 GarageGames, LLC 4// 5// Permission is hereby granted, free of charge, to any person obtaining a copy 6// of this software and associated documentation files (the "Software"), to 7// deal in the Software without restriction, including without limitation the 8// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 9// sell copies of the Software, and to permit persons to whom the Software is 10// furnished to do so, subject to the following conditions: 11// 12// The above copyright notice and this permission notice shall be included in 13// all copies or substantial portions of the Software. 14// 15// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21// IN THE SOFTWARE. 22//----------------------------------------------------------------------------- 23 24#include "platform/platform.h" 25#include "math/mMathFn.h" 26 27//-------------------------------------------------------------------------- 28#define EQN_EPSILON (1e-8) 29 30static inline void swap(F32 & a, F32 & b) 31{ 32 F32 t = b; 33 b = a; 34 a = t; 35} 36 37static inline F32 mCbrt(F32 val) 38{ 39 if(val < 0.f) 40 return(-mPow(-val, F32(1.f/3.f))); 41 else 42 return(mPow(val, F32(1.f/3.f))); 43} 44 45static inline U32 mSolveLinear(F32 a, F32 b, F32 * x) 46{ 47 if(mIsZero(a)) 48 return(0); 49 50 x[0] = -b/<a href="/coding/file/pointer_8h/#pointer_8h_1aeeddce917cf130d62c370b8f216026dd">a</a>; 51 return(1); 52} 53 54static U32 mSolveQuadratic_c(F32 a, F32 b, F32 c, F32 * x) 55{ 56 // really linear? 57 if(mIsZero(a)) 58 return(mSolveLinear(b, c, x)); 59 60 // get the descriminant: (b^2 - 4ac) 61 F32 desc = (b * b) - (4.f * a * c); 62 63 // solutions: 64 // desc < 0: two imaginary solutions 65 // desc > 0: two real solutions (b +- sqrt(desc)) / 2a 66 // desc = 0: one real solution (b / 2a) 67 if(mIsZero(desc)) 68 { 69 x[0] = b / (2.f * a); 70 return(1); 71 } 72 else if(desc > 0.f) 73 { 74 F32 sqrdesc = mSqrt(desc); 75 F32 den = (2.f * a); 76 x[0] = (-b + sqrdesc) / den; 77 x[1] = (-b - sqrdesc) / den; 78 79 if(x[1] < x[0]) 80 swap(x[0], x[1]); 81 82 return(2); 83 } 84 else 85 return(0); 86} 87 88//-------------------------------------------------------------------------- 89// from Graphics Gems I: pp 738-742 90U32 mSolveCubic_c(F32 a, F32 b, F32 c, F32 d, F32 * x) 91{ 92 if(mIsZero(a)) 93 return(mSolveQuadratic(b, c, d, x)); 94 95 // normal form: x^3 + Ax^2 + BX + C = 0 96 F32 A = b / a; 97 F32 B = c / a; 98 F32 C = d / a; 99 100 // substitute x = y - A/3 to eliminate quadric term and depress 101 // the cubic equation to (x^3 + px + q = 0) 102 F32 A2 = A * A; 103 F32 A3 = A2 * A; 104 105 F32 p = (1.f/3.f) * (((-1.f/3.f) * A2) + B); 106 F32 q = (1.f/2.f) * (((2.f/27.f) * A3) - ((1.f/3.f) * A * B) + C); 107 108 // use Cardano's fomula to solve the depressed cubic 109 F32 p3 = p * p * p; 110 F32 q2 = q * q; 111 112 F32 D = q2 + p3; 113 114 U32 num = 0; 115 116 if(mIsZero(D)) // 1 or 2 solutions 117 { 118 if(mIsZero(q)) // 1 triple solution 119 { 120 x[0] = 0.f; 121 num = 1; 122 } 123 else // 1 single and 1 double 124 { 125 F32 u = mCbrt(-q); 126 x[0] = 2.f * u; 127 x[1] = -u; 128 num = 2; 129 } 130 } 131 else if(D < 0.f) // 3 solutions: casus irreducibilis 132 { 133 F32 phi = (1.f/3.f) * mAcos(-q / mSqrt(-p3)); 134 F32 t = 2.f * mSqrt(-p); 135 136 x[0] = t * mCos(phi); 137 x[1] = -t * mCos(phi + (M_PI / 3.f)); 138 x[2] = -t * mCos(phi - (M_PI / 3.f)); 139 num = 3; 140 } 141 else // 1 solution 142 { 143 F32 sqrtD = mSqrt(D); 144 F32 u = mCbrt(sqrtD - q); 145 F32 v = -mCbrt(sqrtD + q); 146 147 x[0] = u + v; 148 num = 1; 149 } 150 151 // resubstitute 152 F32 sub = (1.f/3.f) * A; 153 for(U32 i = 0; i < num; i++) 154 x[i] -= sub; 155 156 // sort the roots 157 for(S32 j = 0; j < (num - 1); j++) 158 for(S32 k = j + 1; k < num; k++) 159 if(x[k] < x[j]) 160 swap(x[k], x[j]); 161 162 return(num); 163} 164 165//-------------------------------------------------------------------------- 166// from Graphics Gems I: pp 738-742 167U32 mSolveQuartic_c(F32 a, F32 b, F32 c, F32 d, F32 e, F32 * x) 168{ 169 if(mIsZero(a)) 170 return(mSolveCubic(b, c, d, e, x)); 171 172 // normal form: x^4 + ax^3 + bx^2 + cx + d = 0 173 F32 A = b / a; 174 F32 B = c / a; 175 F32 C = d / a; 176 F32 D = e / a; 177 178 // substitue x = y - A/4 to eliminate cubic term: 179 // x^4 + px^2 + qx + r = 0 180 F32 A2 = A * A; 181 F32 A3 = A2 * A; 182 F32 A4 = A2 * A2; 183 184 F32 p = ((-3.f/8.f) * A2) + B; 185 F32 q = ((1.f/8.f) * A3) - ((1.f/2.f) * A * B) + C; 186 F32 r = ((-3.f/256.f) * A4) + ((1.f/16.f) * A2 * B) - ((1.f/4.f) * A * C) + D; 187 188 U32 num = 0; 189 if(mIsZero(r)) // no absolute term: y(y^3 + py + q) = 0 190 { 191 num = mSolveCubic(1.f, 0.f, p, q, x); 192 x[num++] = 0.f; 193 } 194 else 195 { 196 // solve the resolvent cubic 197 F32 q2 = q * q; 198 199 a = 1.f; 200 b = (-1.f/2.f) * p; 201 c = -r; 202 d = ((1.f/2.f) * r * p) - ((1.f/8.f) * q2); 203 204 mSolveCubic(a, b, c, d, x); 205 206 F32 z = x[0]; 207 208 // build 2 quadratic equations from the one solution 209 F32 u = (z * z) - r; 210 F32 v = (2.f * z) - p; 211 212 if(mIsZero(u)) 213 u = 0.f; 214 else if(u > 0.f) 215 u = mSqrt(u); 216 else 217 return(0); 218 219 if(mIsZero(v)) 220 v = 0.f; 221 else if(v > 0.f) 222 v = mSqrt(v); 223 else 224 return(0); 225 226 // solve the two quadratics 227 a = 1.f; 228 b = v; 229 c = z - u; 230 num = mSolveQuadratic(a, b, c, x); 231 232 a = 1.f; 233 b = -v; 234 c = z + u; 235 num += mSolveQuadratic(a, b, c, x + num); 236 } 237 238 // resubstitute 239 F32 sub = (1.f/4.f) * A; 240 for(U32 i = 0; i < num; i++) 241 x[i] -= sub; 242 243 // sort the roots 244 for(S32 j = 0; j < (num - 1); j++) 245 for(S32 k = j + 1; k < num; k++) 246 if(x[k] < x[j]) 247 swap(x[k], x[j]); 248 249 return(num); 250} 251 252U32 (*mSolveQuadratic)( F32 a, F32 b, F32 c, F32* x ) = mSolveQuadratic_c; 253U32 (*mSolveCubic)( F32 a, F32 b, F32 c, F32 d, F32* x ) = mSolveCubic_c; 254U32 (*mSolveQuartic)( F32 a, F32 b, F32 c, F32 d, F32 e, F32* x ) = mSolveQuartic_c; 255